
Production of Prefabricated Wall Elements:
Flow Shop with Multi-Task Flexibility

Gaia Nicosia1, Andrea Pacifici2, Ulrich Pferschy3, Cecilia Salvatore2

1 Università degli studi Roma Tre, Roma, Italy
gaia.nicosia@uniroma3.it

2 Università di Roma Tor Vergata, Roma, Italy
{andrea.pacifici}{cecilia.salvatore}@uniroma2.it

3 University of Graz, Graz, Austria
ulrich.pferschy@uni-graz.at

Abstract

We address a special flow shop scheduling problem arising in a production line of a
company building prefabricated house walls. Each job requires the execution of a number
of operations, in a strict order, by machines placed along a line. Some of these operations
can be executed indifferently at one stage or the next one along the flow line. Both
the assignment of operations and the scheduling of the jobs has to be decided in order
to minimize the time needed to complete all the jobs. This problem may be viewed
as a permutation flow shop with special additional blocking constraints and multi-task
flexibility, viz. no buffer is available between consecutive machines in the line and certain
machines at one stage can process a number operations of two other adjacent stages in
the system.

In our study, we present four different Mixed Integer Programs and the outcome of
computational tests which simulate realistic scenarios of the production environments.
Experiments are designed in order to assess the performance of the models both in
terms of computing time and effectiveness. Preliminary results show that embedding the
operations-to-machine assignment in the scheduling decision variables guarantees satis-
factory results when dealing with instances significant for the motivating application.

Keywords : Scheduling, Mixed Integer Linear Programming, Multi-Task Flexibility.

1 Introduction
The optimization problem addressed in this work is inspired by a material handling problem
arising at the production line of a company building prefabricated house walls. The production
line of the company is currently organized so that the house walls (the jobs) pass through
five different work stations where several processing steps (operations) are carried out. The
sequence of processing steps for the preparation of distinct walls present only small differences,
which depend on the facilities placed on the wall itself. Hence, the stations are visited by each
wall in a same sequence. In the following we will refer to the i-th visited station as machine Mi,
i = 1, 2, . . . , 5. Moreover, due to the large size and weight of the bulky walls, no intermediate
storage is possible between the individual stations. As a consequence, the so-called blocking
constraints occur: a wall cannot move to the next work station if this is busy thus blocking
the upstream machines.

A peculiar characteristic of this problem is that some of the operations that have to be
executed on each wall may be undertaken by any of two consecutive machines of the flow
line. A graphic representation of this situation is depicted in Figure 1 which depicts possible
assignments (indicated by dotted arrows) of the operations on the corresponding processing

machines. Jobs are comprised of a set of operations to be executed in a strict order. In the
illustration, with no loss of generality, we aggregated operations that must be performed on
a specific machine (namely, operations 1, 2, 10, 15, and 16, to be executed on M1, M2, M3,
M4, and M5, respectively). The other operations can be assigned to one of two consecutive
machines: For instance, operations 11–14 can be assigned to machine M3 as well as to M4.

Therefore, the problem consists in simultaneously finding (i) the assignment of each operation
to machines and (ii) the sequencing of the jobs so that makespan is minimized.

Problems in which, in a flow line, certain operations can be assigned to at least two consec-
utive stages/machines are called scheduling problems with multi-task flexibility or inter-stage
flexibility, i.e., flexible operation-to-machine assignment [1, 3, 4].

In [4] the authors address a permutation flowshop with m machines and q > m operations in
which each job has different tasks to be processed that need to be assigned to the workstations
and, as in our case, such assignment is restricted by the order of operations. The authors
propose a heuristic algorithm to solve the problem.

Other papers, such as [2, 3], provide complexity characterization of flowshop scheduling
problems with multi-task flexibility on 2 or 3 machines.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M1 M2 M3 M4 M5

FIG. 1: Feasible operation-to-machine assignments for a single job.

2 Mathematical Programs
In this study we compare four Mixed Integer linear Programs (MIP) for our special flow shop
scheduling problem. We are using two standard ways to represent the sequencing of the jobs
that make use of different set of variables: In the first one, each job is assigned to a “position”
in the sequence strict order. The second one models precedence relations between job pairs.
We refer to those models as positional- (π) or precedence- (α) variables models.

The first two models address multi-task flexibility by using variables (x) that explicitly model
the decision of performing one operation on a specific machine. Hereafter, we detail one of the
models in Section 2.1 and, in the remainder of the paper, we limit ourselves to briefly sketching
the main distinct features of the three remaining models w.r.t. the first one.

Hereafter, M is the set of m (= 5) machines in the flow line; J is the set of n jobs: Each
job j consists of an ordered sequence Oj of q operations. The i-th operation of job j ∈ J is
denoted by j(i). Set Mj(i) contains (at most two consecutive) machines that can process j(i).
The processing time of j(i) on machine k is pk

j(i). Moreover, H = 1, . . . , n is the set of positions
in the sequence.

2.1 Positional Variables Model
We consider the following sets of binary variables: πjh indicates whether job j is processed as
the h-th job of the sequence (hereafter, the job “in position” h) while xijk if operation i of job
j is assigned to machine k to be processed. We also use two sets of continuous variables: shk is
the starting time of the job in position h on machine k and Phk represents the total processing

time of the operations of job in position h assigned to machine k. The above variables are
defined for all h ∈ H, i ∈ O(j), j ∈ J , k ∈ M.

The objective function, to be minimized, is the makespan Cmax = snm + Pnm, that is the
completion time of the last job on the last machine. In order to guarantee that exactly one
job is placed in each position and that each job is in a position we use standard assignment
constraints

∑
h∈H πjh = 1 for all j ∈ J and

∑
j∈J πjh = 1 for h ∈ H. We also ensure that

each operation is executed on (exactly) one machine with
∑

k∈Mj(i)
xijk = 1 for all operations

i ∈ Oj , j ∈ J .
We need to impose that the sequence of operations on the machines is respected: this is

enforced by the constraints xi+1jk + xijk̂ ≤ 1, defined for all i ∈ Oj , j ∈ J , k ∈ Mj(i+1),
k̂ ∈ Mj(i) with k < k̂.

The following sets of additional constraints are discussed hereafter.

shk+1 ≥ shk + Phk k ∈ M \ {m}, h ∈ H (1)
sh+1k ≥ shk + Phk k ∈ M, h ∈ H \ {n} (2)

shk ≥ sh−1k+1 k ∈ M \ {m}, h ∈ H \ {1} (3)
Phk ≥

∑
j(i) : k∈Mj(i)

pk
j(i)xijk +

− B(1 − πjh)
h ∈ H, k ∈ M, j ∈ J (4)

Inequalities (1) and (2) establish the correct sequence of jobs w.r.t. machines. The blocking
constraints are set with equations (3) imposing that the job in position h may start being
processed on machine k only if the preceding job in position h − 1 has moved on and started
its processing on machine k + 1. Finally, the latter set of constraints (4), in which we may
choose the “large” constant B = maxj,k{

∑
j(i):k∈Mj(i)

pk
j(i)}, returns the correct quantities for

the processing time of the job placed in position h on machine k. Binary variables πjh and
xijk are defined for all i ∈ Oj , j ∈ J , h ∈ H, and k ∈ M, whereas continuous nonnegative
variables shk and Phk for k ∈ M and h ∈ H.

2.2 Precedence Variables Model

In this standard MIP model, a solution schedule is defined by a set of binary variables αij ,
each associated to a pair of jobs i, j, controlling the precedence relation between these two jobs.
In addition, we use job starting-time variables sj ≥ 0, for all j ∈ J and an additional Cmax
variable to record the makespan. The above assignment variables xijk and the corresponding
constraints ensuring that each operation is assigned to one machine are still used in this model.

2.3 Models with Implicit Assignment

In our particular setting, the number of possible assignments is limited: Respectively, 7 and
4 operations can be assigned to M2 or M3 and M3 or M4 (see Figure 1) yielding to a set of
feasible assignment modalities (hereafter denoted as A) having cardinality equal to 40. On
these grounds, and due to unsatisfactory results of some preliminary tests with the above
two models, we design an additional pair of MIP models in which the operation-to-machine
assignment is taken into account implicitly, as we discuss in the following section.

In these models, we look at the job sequences for each possible assignment modality l ∈ A.
The latter set A is computed in a preprocessing phase together with all the processing times
pjkl of each job j ∈ J on all machines k ∈ M, under all assignment modes l ∈ A.

Similar to the MIPs introduced in Section 2.1 and 2.2, we use |A| binary variables for each
job pair: πjhl indicates whether job j is processed in the h-th position when the assignment
modality is l. Similarly, in the model with precedence variables, we need to define n2|A| binary
variables αijl indicating if job i precedes job j under the assignment modality l.

In both the above models, it is necessary to select one among the |A| possible assignments.
Note that, in general, these models require an exponential number of variables, as the number
of feasible operation-to-machine assignments is O(|M|q).

3 Preliminary Computational Experiments
Preliminary tests have been executed on a standard PC with 16GB RAM, 2.80GHz CPU, and
the Gurobi 10.0.1 solver. At the moment the experiments consist of four classes with 10, 15,
20, and 25 jobs, each comprised of 10 randomly generated instances.

Our results illustrate the difficulty of the problem. Within a time limit of half an hour
per instance, already with 15 jobs some of the four models are not able to find an optimal
solution for all instances. Indeed, the precedence-variables models are less effective compared
to those with positional-variables. It is also evident that the two implicit-assignment models
outperform the corresponding models adopting explicit assignment variables. The positional-
variables model with implicit assignment is the clear winner, as it closes the gap on all instances
up to 20 jobs and on 6 out of 10 instances with 25 jobs. The relative gaps from the best lower
bounds do not exceed 3.5% for this model (and, in any case, it stays below 4.5% for all four
models in all the tests).

Current experiments, concerning the best model only, aim at testing a procedure pairing the
MIP with a preprocessing heuristic that selects—based on the instance—a suitable subset of
the assignment modes in order to reduce the size of the model itself, so to hopefully improve
its performance.

References
[1] Mohamed-Naceur Azaiez, Anis Gharbi, Imed Kacem, Yosra Makhlouf, and Malek Mas-

moudi. Two-stage no-wait hybrid flow shop with inter-stage flexibility for operating room
scheduling. Computers & Industrial Engineering, 168:108040, 2022.

[2] Federico Della Croce, Fabio Salassa, and Vincent T’kindt. Exact solution of the two-
machine flow shop problem with three operations. Computers & Operations Research,
138:105595, 2022.

[3] Danial Khorasanian and Ghasem Moslehi. Two-machine flow shop scheduling problem
with blocking, multi-task flexibility of the first machine, and preemption. Computers &
Operations Research, 79:94–108, 2017.

[4] Alex J. Ruiz-Torres, Johnny C. Ho, and José H. Ablanedo-Rosas. Makespan and worksta-
tion utilization minimization in a flowshop with operations flexibility. Omega, 39(3):273–
282, 2011.

